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Abstract The ability to automatically estimate typical affective responses to music
would enable the development of emotion-aware music recommendation systems.
However, the lack of suitable datasets for this task has hindered attempts to design
such systems. In this work, we introduce social media conversational data as a
new feature space for music emotion recognition. We create a large dataset of
social media musical discourse with over 11.8 million comments from Reddit and
YouTube discussing 19,627 different songs. We fine tune large language models on
this conversational data in a two-target regression task to predict music valence and
arousal annotations. We demonstrate a modest ability to estimate human annotated
music emotion targets directly from social media comments. Our highest performing
model achieves Pearson’s correlations of 0.80 and 0.79 for valence and arousal,
respectively. These results imply that emotive qualities of a song may be inferred
directly from social media conversations, without access to the audio or lyrics.

1 Introduction

The ability of music to elicit powerful emotional responses in listeners is widely-
recognized across human cultures and societies. Although the connection between
human emotions and music is not fully understood, the fact that listening to music
engages the limbic system [32] hints at the importance of music throughout our bio-
logical and cultural evolutions [16]. In recent years, there has been growing interest
in the music information retrieval (MIR) community to design computational ap-
proaches capable of estimating human emotional responses to music. If researchers
studying music emotion recognition (MER) tasks could automatically estimate typ-
ical human responses to any piece of music, music recommendation systems would
be able to make more emotionally-informed suggestions.

Oregon State University, e-mail: {beerya,donnellp}@oregonstate.edu

1

{beerya, donnellp}@oregonstate.edu


2 Aidan Beery and Patrick J. Donnelly

Methods for music mood evaluation typically rely on human annotators to each
listen to a musical excerpt and provide a subjective rating based on their perceived
emotive response. These subject studies are both expensive and time-consuming, re-
quiring many annotators to rate each song to ensure statistically significant sampling.
This dirth of annotated data has hindered the advancement of music emotion recog-
nition systems. Furthermore, no standard for emotion modeling has emerged among
researchers. Models of affective response often range from mood classification tasks
[10] to prediction of continuous valence-arousal values [14].

Despite these challenges, there have been a variety of attempts to predict a song’s
emotive qualities automatically. Early methods attempted to learn associations with
emotion from manually engineered acoustic features [42]. However, such approaches
have been insufficient, and researchers have declared a ”semantic gap” between low-
level acoustic descriptors and the perceptual features observed by human listeners
[48]. Furthermore, copyright concerns restrict MIR researchers from distributing
audio recordings alongside music emotion datasets, hindering the exploration of
audio information as a feature space. Lyrics have been used to augment acoustic
feature models [34, 63] and by themselves [26, 2]. However not all music contains
lyrics, limiting the generalizability of this approach. Researchers have also explored
other modalities, including heart rate [28], electrodermal activity [67], and video of
facial expressions [33], often with little success. A few studies have reported limited
success with estimating music emotion values from the tags provided by users on
online music metadata aggregators such as Last.fm1 [17, 5, 6]. However, this feature
space is relatively small, often only consisting of a few dozen single-word descriptors
which members of the Last.fm community deemed relevant to a piece of music.

We hypothesize that the conversations users have about a piece of music might
contain semantic clues about typical affective responses to that piece of music. We
present a novel approach [20] for learning the continuous valence and arousal values
of a song using only the social media conversations referencing that song. To achieve
this, we compile a large dataset of social media music discourse using the songlists
from four music emotion datasets: AMG1608 [14], PMEmo [67], DEAM [3], and
Deezer [17]. We train several large language models to predict music emotion values
from these social media comments alone without relying on audio signal analysis or
lyrics information. We believe this to be the first approach to estimate the affective
qualities of a song solely from social media conversations.

2 Related Work

Music emotion recognition is the task of training computational models to estimate a
culturally-average emotive response for a piece of music. The ability to automatically
understand the relationship between the audio signal of a piece of music and the
anticipated human emotion is of great interest to the field of music information

1 https://www.last.fm/
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retrieval. This is a particularly difficult problem because affective responses about
music are subjective and vary both within and between different culturally-entrained
groups of listeners. Researchers studying this problem typically train models to
estimate an emotional response based on the average of multiple different annotators.

Furthermore, there is a large semantic gap between high level music concepts
and low level acoustic features extracted directly from an audio signal. To overcome
these difficulties, researchers have explored many different modalities, including
descriptive features from audio, music scores, song lyrics, music videos, and even
physiological signals monitoring the listener.

Research studies in music emotion recognition typically seek to classify a cate-
gorical label for the entire song with classification [36, 27, 34, 65, 40] or to estimate
dimensional values with regression [65, 13, 53, 44, 54]. Researchers have also
explored probabilistic mappings between categorical and dimensional emotion se-
mantics of music [58]. These predictions are most typically made at the song-level
[27, 43, 39, 15, 19, 11] although there is also active research attempting to track
dynamic changes in emotion over time [61, 53, 37, 11].

2.1 Acoustic Features

Traditionally, researchers exploring models to recognize music emotion have relied
upon low-level features extracted from the audio signal of a song. Many studies
rely upon features extracted from common audio toolkits and frameworks, such as
PsySound [9], MARSYAS [56], jAudio [46], YAFFe [45], OpenSmile [22], or Es-
sentia [7]. In other cases, the authors craft customized signal processing methods
to attempt to capture information from the audio signal that might be useful in at-
tempts to predict human emotional responses to music. Over the years, researchers
have explored thousands of features measuring pitch, melody, harmony, rhythm,
dynamics, timbre, and expression (see [48] for a review). Using these descriptive
audio features to train machine learning models, researchers have explored many
different algorithms, such as linear regression [13, 40, 53], support vector machines
[36, 34, 65, 27, 23], support vector regressors [65, 53, 61], random forests [34], and
Gaussian models [42, 53], and in recent years, deep learning approaches such as au-
toencoders [12], generative adversarial networks[29], convolutional neural networks
[19, 15] and recurrent neural networks [61, 37, 43, 39, 47, 11].

In one early approach, researchers applied support vector machines in an attempt
to classify 13 different emotions, using features extracted from 30-second excepts
of 499 audio files across 128 different albums covering four genres of music [36].
The authors reported an F1 score of only 0.41, highlighting the difficulty of the
problem. One major limitation of this study is that the emotion labels were all
labeled by a single expert listener. In another study, which considered only a single
genre, the authors employed several domain experts to manually annotate a dataset
of 250 pieces of classical music with one of four emotions: contentment, depression,
exuberance, and anxiety. After extracting numerous rhythm and timbre features,
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the authors applied a Gaussian mixture model to achieve 86.3% accuracy [42].
Acknowledging that annotator fatigue may lead to inconsistent emotion labels, one
study designed a music emotion prediction tool to help reduce annotator fatigue in the
hopes of yielding more robust datasets [63]. Because emotional reactions to music
are highly subjective, another study sought to increase the number of annotations
available for each of the 200 songs in their dataset. Crowd-sourcing the task online,
the authors collected an average of 28.2 annotations across their dataset of 30-second
excerpts of film score soundtracks [62], labeling eight different moods: sublime, sad,
touching, easy, light, happy, exciting, and grand. For this task, the study reported
a cosine similarity of 0.73 after training support vector machines with acoustic
features. Although the authors extracted a total of 88 features, they reported that they
achieved similar efficacy with only the best 29 features.

More recently, Chowdhury et al. investigated the development of mid-level fea-
tures with the hope of helping to close the semantic gap between low-level audio fea-
tures and human emotive responses to music [15]. These mid-level features describe
perceptual concepts, such as tonal stability, articulation, and rhythm. The authors
performed feature-importance analysis and trained convolutional neural networks to
predict emotions from a dataset of 110 movie soundtracks, achieving a correlation of
0.71 relative to annotations by experts. In general, intelligent systems have struggled
to predict human responses to music based on acoustic features alone. There remain
disconnections between audio descriptors and high level music concepts. Because of
this semantic gap between low-level audio features and human affective responses,
researchers are limited in their ability to predict emotional response from acoustic
information alone [48]. To improve the prediction of affective responses from audio,
it seems necessary to supplement audio features with additional modalities [64].

2.2 Natural Language Processing Approaches

Given the predictive limitations of learning from audio alone, researchers considered
the potential of song lyrics to aid in the prediction of the emotional qualities of a
song. Investigators first began by examining statistical correlations between features
extracted from the audio and the lyrics as well as the relationship between these
features and the emotion annotations themselves [44]. To compensate for the lack of
annotated data, one study synthetically generated emotion labels for a dataset of 100
pop-genre songs. They extracted popular tags from Last.FM and compared against
the lexical database WordNet2. They applied latent semantic analysis, training self-
organizing maps to annotate songs with four mood categories (angry, happy, sad,
relaxed), manually verifying over two-thirds of labels [35]. The authors reported
lower accuracy using lyrics alone (62.5%) compared to the models built on acoustic
features (89.8%) [34]. The authors found that by combining acoustic and lyric
features together, they were able to increase accuracy by three percent (92.4%) [5].

2 https://wordnet.princeton.edu/
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In a sequence of studies, Hu and Downie examined the relationship between
emotion labels and text-based features extracted from the lyrics. To annotate their
dataset with synthetic annotations of 18 moods, the authors used Last.FM tags and
their WordNet distance to words in the ANEW word list [8] in order to estimate
valence, arousal, and dominance values for 5,296 songs in their dataset [27]. The
authors then compared various approaches to lyric sentiment analysis [25] in order
to identify cases in which the performance of lyric-only models exceeded those
of acoustic feature models [26]. Overall, the authors found their lyric-only model
(63.7%) outperformed their audio-based model (57.9%). A fusion model combining
text and audio features showed moderate improvement (67.5%) over lyrics alone.
Similarly, another study reported that a late fusion of audio features and text-based
features derived from the lyrics improved accuracy of their models from 46.6% to
57.1% [65]. More recently, researchers have investigated the performance of emotion
recognition models based solely on the lyrics. In one such study, the authors estimated
the valence and arousal values of the words in the lyrics using established word lists
to create a song-level predictions of valence and arousal. The authors reported a
74.3% classification accuracy relative to the All Music Guide3 mood tags [10].

2.3 Deep Learning Approaches

Following the many advances in deep neural algorithms and architectures over the
last decade [52], researchers have begun exploring music emotion recognition tasks
using both acoustic features and text-based lyrics using deep learning.

2.3.1 Deep Learning on Acoustic Features

Authors have investigated different deep neural architectures to attempt music emo-
tion prediction using acoustic features. For this task, recurrent neural networks
outperform feedforward neural networks [61]. Among recurrent architectures, bidi-
rectional long short-term memory (BLSTM) models appear to improve prediction
of musical affect over unidirectional long short-term memory (LSTM) models [37].
Additionally, researchers have reported that attentive-LSTM models improve pre-
diction performance of arousal and valence estimations over baseline LSTM models
without attention [43, 11]. By-passing preprocessing and feature extraction alto-
gether, one research team trained bidirectional gated recurrent units directly on raw
audio to attempt to classify discrete music emotions [47].

One study designed a custom experimental pipeline that makes use of both con-
volutional and recurrent neural networks. The authors employed a convolutional
neural network to learn to select which acoustic features were subsequently used to
train an LSTM model. On a custom dataset of 30 second excerpts of 124 pieces of

3 https://www.allmusic.com/
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Turkish traditional music, the authors achieved classification accuracy of 92.7% for
three broad categories of emotion, which outperformed their baseline algorithms of
support vector machines, random forest, and 𝑘-nearest neighbor [24]. Another re-
cent study proposed adapting a generative adversarial network with double-channel
attention mechanism (DCGAN) in order to learn the dependence between music
features across channels [29]. To evaluate their architecture, the authors designed
an experiment classifying five emotional characteristics (happy, sad, quiet, lonely,
longing) on a custom dataset of 637 songs, reporting that the DCGAN (89.4%)
outperformed both convolutional and recurrent architectures.

2.3.2 Deep Learning on Lyrics

In addition to the approaches to estimate emotional responses to music directly from
the audio of a song, other researchers have studied the use of the lyrics of a song
using deep learning to estimate human responses to music. Using only the text of the
song lyrics, Agrawal et al. trained the xl-net transformer [66] and achieved around
95% classification accuracy on a large dataset of lyrics [2]. This encouraging result
may imply large-language models have the ability to capture meaningful semantic
relationships from music lyrics without additional acoustic descriptors.

More recently, investigators have begun adapting large language models (LLM)
and algorithms to learn embeddings directly from the audio signal. One recent
study combined a large-scale pretrained language model with an audio encoder
to attempt to generate interpretations from cross-modal inputs of song lyrics and
musical audio [68]. Another research team explored representations of music using
a joint embedding of natural language and audio [30]. Using these embeddings of
over 5000 music and text pairs, the team trained generative acoustic models able to
produce music based on a text description given as input [1].

2.4 Large Language Models

Transformers are deep learning models based on the principle of self-attention [57].
This LLM architecture, first introduced in 2017, has quickly become popular in
the areas of natural language processing (NLP) and computer vision (see review
[38]) where large pretrained models have achieved state-of-the-art performances in a
wide variety of tasks. In this section, we briefly review the four transformer-derived
models that we compare in this study.

2.4.1 BERT

BERT, or Bi-directional Encoder Representations from Transformers, is a popular
transformer model for learning representations of natural language [18]. BERT
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leverages a large dataset of unstructured English text from Wikipedia and assorted
literature. By taking unlabeled sequences of English text, corrupting parts of the
input, and attempting to predict the missing tokens, the model encodes complex
relationships between words, and demonstrates the ability to learn robust language
representations. This self-supervised pretraining objective function is referred to as
masked language modeling, and has become the foundation for many similar models.
Because BERT and other LLMs are pretrained on very large amounts of data, these
model can be fine-tuned to new tasks relatively quickly. However, model training
still requires significant compute resources, especially when learning large datasets.
BERT is widely used in many NLP tasks, including machine translation, dialogic
generation, question answering, and sentiment analysis.

2.4.2 DistilBERT

DistilBERT seeks to address the immense computational requirements of BERT
while retaining the same capability to learn effective language representations. To
accomplish this, they leverage knowledge distillation to train a smaller model to
emulate the behavior of BERT [51]. By optimizing DistilBERT to predict the same
output probabilities as BERT during pretraining, the authors design a model which
retains 97% of the performance on benchmark NLP tasks. DistilBERT bases its
architecture on BERT, but reduces the number of hidden layers from 12 to 6. This
lowers the number of model parameters by 40%, enabling faster training and fine-
tuning.

2.4.3 RoBERTa

RoBERTa aims to surpass the performance of BERT by both leveraging a larger pre-
training corpus and by modifying the pretraining objective task. [41]. The authors
replicate the architecture of BERT while empirically studying how various factors
in the pretraining of large language models impacts downstream task performance.
They find that encoder transformer models respond positively to significantly larger
pretraining datasets and longer pretraining schedules with larger batch sizes. Fur-
thermore, they propose a dynamic masking method, randomly altering which tokens
are masked during the masked language modeling task, which helps to improve the
performance of RoBERTa on NLP benchmarks compared to BERT.

2.4.4 xl-net

xl-net is another transformer architecture which seeks to improve upon limitations
of large transformer models with autoencoder-based pretraining objectives such
as BERT and RoBERTa [66]. The xl-net architecture features an autoregressive
objective function, doing away with the masked language modeling approach used
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by BERT and its derivatives. This, the authors propose, should reduce the asymmetry
between the distributions learned during the pre-training process and those of the
inputs in downstream tasks. Unlike previous autoregressive approaches, xl-net
models all possible permutations of the input sequence, enabling it to learn long-
range and bi-directional dependencies of words in context. Like other LLMs, it is
pretrained on a large corpus of text and subsequently fine-tuned with additional
training for specific NLP tasks. xl-net has been shown to achieve competitive
results on many NLP benchmarks.

3 Music Emotion Datasets

In this work, we study the task of music emotion recognition over four datasets of
songs with song-level annotations of valence and arousal. These datasets were created
using similar procedures: tasking human annotators to listen to a musical excerpt and
provide a numeric description of their emotive response. The labor-intensive nature
of collecting these annotations has hindered research in music emotion prediction.
The advent of crowdsourcing platforms has enabled experimenters to reach a wider
audience, however these annotations are still expensive and time-consuming [14].
Researchers have also created synthetic valence-arousal annotations [17] by mapping
community-provided features, such as Last.fm tags or metadata from the All Music
Guide, to existing word-affect datasets [60].

Dataset Songs Label Type Scaling

AMG1608 1608 Crowdsourced [−1, 1 ]
DEAM 1803 Crowdsourced [ 0, 10]
PmEmo 767 Lab Survey [ 0, 1 ]
Deezer 18,648 Synthetic 4 [−3, 3 ]

Table 1: Details of the valence and arousal labels in selected MER datasets.

3.1 AMG1608

The AMG1608 dataset provides 1,608 songs selected from the All Music Guide
(AMG) and rated for valence and arousal by 665 annotators [14]. The dataset’s
creators aimed to develop a large and state-of-the-art music emotion recognition
dataset. To conduct an annotation experiment at this scale, the authors used Amazon
Mechanical Turk−an online crowdsourced work platform−to reach a large subject
pool. AMG users rated songs for 34 different mood categories, which are converted
from mood labels to valence-arousal estimates using the tag2VA algorithm [59].
From this, a subset evenly distributed in the valence-arousal space was selected. 665
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annotators participated in the experiment, and between 15 and 32 annotations were
collected per song. 46 annotators provided ratings for over 150 songs, presenting a
unique opportunity for a study of emotion-aware music recommender personalization
as well as introducing a potential bias in the label distribution. Each annotator
listened to a 30-second excerpt of the sample and provided a dimensional rating in
the circumplex model of emotion. Each coordinate was treated as a valence-arousal
label, and individual coordinate labels were averaged between annotators to produce
an emotion label for a given song.

3.2 PMEmo

Music emotion recognition datasets typically fall into one of two categories: small
datasets with few annotators rating samples in lab environments to yield high-quality
individual annotations or larger datasets with many annotations of relatively lower
quality gathered using online crowdsourcing platforms such as Amazon Mechanical
Turk. The PMEmo dataset fills the need for music emotion datasets with both high-
quality annotations and many samples by conducting a large-scale human subject
study in a laboratory setting [67]. 457 annotators, including 366 Chinese university
students, participated to annotate valence and arousal over a collection of 794 songs.

1000 songs were selected from record label industry charts between 2016 and
2017, such as Billboard Top 100, iTunes Top 100, and UK Top 40 Singles. After
deduplication, 794 songs remained, primarily representing Western pop music. A
30-second sample representing the chorus of each song was manually excerpted by
music students. Annotators were instructed to listen to each sample and provide
dynamic valence-arousal ratings at a 2 Hz sample rate using an annotation interface
derived from the Self Assessment Mannikin [8]. At the end of the sample, annotators
were then asked to provide a single valence-arousal rating representing their overall
emotive response to the song. These static annotations were averaged to provide
valence-arousal labels for each song. Electrodermal activity was also recorded from
participants during the listening and annotation experiment.

3.3 DEAM

Research in music information retrieval continues to be hindered by a lack of anno-
tated datasets with accompanying audio data. Copyright restrictions on the majority
of publicly released music prohibits researchers from distributing audio recordings
in music datasets, posing significant challenges to approaches that learn from audio
data. In response, Soleymani et. al. provide a dataset of royalty-free songs annotated
for affective qualities using continuous emotion labels [3].
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Fig. 1: Distributions of the valence-arousal labels for each of the datasets.

The DEAM dataset consists of 1,803 songs collected from freemusicarchive,
jamendo, and medleyDB, online repositories of royalty-free music. 45-second seg-
ments were selected randomly from each sample, and annotators were asked to
provide dynamic valence and arousal annotations at a 2 Hz sample rate while lis-
tening to this excerpt. These dynamic ratings were averaged over time to provide
a single per-participant valence-arousal annotation. Annotators were recruited from
Amazon Mechanical Turk, and each song received a minimum of five annotations.
Along with averaged valence-arousal annotations, the authors provided both the
excerpt and full-length audio for each song. Although the royalty-free licensing of
these songs permits the distribution of the audio recordings, it seems that these
copyright-free samples are more obscure than songs included in other datasets. For
this reason, we expect to find less online discourse about these songs compared to
popular songs used in other datasets.

3.4 Deezer

Despite these efforts towards the creation of large-scale annotated music emotion
recognition datasets, even the largest manually annotated datasets only consist of a
few thousand samples at most. To evaluate the utility of deep learning approaches
for valence-arousal estimation, significantly more data is necessary than what is
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currently available. The cost of manually annotating datasets at sufficient scale would
be prohibitive. Researchers at Deezer developed a dataset consisting of synthetic
valence-arousal labels, which we refer to as the Deezer dataset[17].

In this study, songs available in both the Million Song Dataset [4] and Deezer’s
music streaming library were selected. Each song’s associated tags were aggregated
from Last.fm, providing a list of community-provided key descriptors for each song.
From these tags, a synthetic valence and arousal label was generated by comparing
the tags against the Extended ANEW dataset [8], a collection of 14,000 English
words annotated for valence and arousal [60]. The Deezer dataset operates on the
fundamental assumption that the valence and arousal annotations of English words
from Warriner et. al.’s experiments transfer to the music emotion space, and that the
descriptors added by community users on Last.fm meaningfully relate to the song’s
emotive qualities. For these reasons, the authors concede that their dataset is not as
robust of a ground truth as manually annotated music emotion datasets.

Fig. 2: Circumplex models, representing distributions of the labels from four music
emotion datasets across Russell’s emotional space [50].
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4 Musical Discourse Model

We propose a system for the automatic prediction of static valence and arousal targets
using the social media discourse related to a song to estimate users’ average emotive
response to that song. To accomplish this, we collect social media commentary from
Reddit5 and YouTube6, both platforms with active music sub-cultures engaging in
discussion about music. From these conversations alone, and without considering
the song’s audio or lyrics, we attempt to predict a song’s valence and arousal by fine-
tuning pretrained large language models. We focus our investigation on transformer-
based encoder models, such as BERT [18] and its derivatives, on a two-target
regression task of estimating song-level estimates of music emotion from online
comments associated with a musical sample.

4.1 Collecting Social Media Commentary

(a) Number of comments per song (b) Length of comments

Fig. 3: Social media discourse dataset distributions, stratified by dataset.

We collect social media discourse which references the songs from AMG1608
[14], PMEmo [67], DEAM [3], and Deezer [17]. In total, our dataset gathers social
media comments about 19.627 songs, of which 4,179 are manually annotated. For
each sample in the four datasets, we query the two social media platforms for posts
which make direct reference to both the song title and the artist. From each platform,

5 https://www.reddit.com/

6 https://www.youtube.com/

https://www.reddit.com/
https://www.youtube.com/
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we select the 50 highest rated submissions as ranked by each platform’s search API.
We then collect every comment and reply which responds to any of these top-level
submissions. If a song has not been discussed on Reddit or YouTube, we omit that
song from our discourse dataset. Table 1 describes our dataset of retrieved comments.

We collected data over a six month period between November 2022 and April
2023, scraping both past and recent comments. We achieved higher retrieval rates
from YouTube across all four songlists; 84% to 97% of all queried songs had at
least one matching post. Retrieval rates from Reddit were lower, although we found
reference to over 80% of songs from AMG1608 and PMEmo. However, only 11%
of songs from DEAM had corresponding comments on Reddit. When comparing
DEAM against similarly sized datasets, we observed that our data collection totals
1,472,021 and 881,931 comments for the songs in AMG1608 and PMEmo datasets,
respectively, but only 303,667 comments reference songs from DEAM. In total, our
dataset of musical discourse contains more than 11 million comments. Figure 3
shows the distribution of the retrieved comments and their associated lengths. Un-
surprisingly, the popular songs from the PMEmo dataset were associated with higher
rates of discourse. Conversely, for the relatively obscure songs in the DEAM dataset,
we found significantly fewer comments per song than other datasets.

Songs Comments Words

𝑛 Yield 𝑛 𝜇 𝜎 𝜇 𝜎

AMG1608 Reddit 1,412 88% 578,283 409.5 1,180.5 15,796 43,847
YouTube 1,563 97% 893,738 571.8 268.1 11,424 5,917

PmEmo Reddit 624 81% 391,325 627.1 1,122.1 21,065 47,179
YouTube 736 96% 490,606 666.6 267.1 11,333 5,806

DEAM Reddit 205 11% 69,943 341.2 1,873.1 13,562 67,127
YouTube 1,508 84% 233,724 155.0 194.8 3,153 5,030

Deezer Reddit 11,122 60% 2,497,517 224.6 767.2 8,963 30,649
YouTube 16,435 88% 6,685,202 406.8 229.2 7,524 4,792

Total 19,627 86% 11,840,338 603.3 911.5 14,904 32,125

Table 2: Summary statistics for our dataset of social media commentary by source.

4.2 Model Design

We evaluate our musical discourse dataset as a feature space in the task of music
emotion recognition by applying large pretrained transformer models designed for
natural language understanding tasks to our corpora. These models learn language
representations from very large datasets of unstructured text using self-supervised
language modeling tasks. From this pretraining, these models can be fine-tuned to
learn downstream tasks in relatively few epochs [18, 41]. We fine-tune one such
model, BERT, on our multi-target regression task by assigning each song’s valence
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and arousal label to the comments relating to that song, and attempting to predict
a song’s emotive annotations directly from this social media discourse. We then
compare the performance of BERT on this task to a selection of other pretrained
large language models: DistilBERT [51], RoBERTa [41], and xl-net [66].

We use the implementations of these large language models provided by the
Hugggingface deep natural language processing library7. Each input consists of a
single social media comment, labeled by the valence and arousal annotation for
the song which the comment is associated with. We tokenize each input using
the TokenizerFast library and use a maximum sequence length of 128 tokens,
truncating and right-padding inputs to coalesce sequences to this dimension.

Our model consists of two components: a pretrained transformer to learn a repre-
sentation for input comments, and a fully-connected neural network with one hidden
layer to learn a regression target from this language representation. We output the last
hidden state of the [CLS] token, as is standard for designing classifiers using BERT’s
language representations [18]. Our fully-connected layer, serving as the regression
head, learns a valence and arousal output based on these [CLS] last-hidden-state
vectors. We fine-tune BERT to adapt the learned representations to our downstream
task. This does incur a risk of overfit, as BERT and its derivatives have significantly
more parameters than our dataset has examples. We limit our fine tuning to two
epochs to mitigate overfit as recommended in [18, 51]. We use a mean-squared-error
loss and the Adam optimization algorithm [31] with a learning rate of 1 × 10−5.

4.3 Experimental Design

We randomly partition each songlist into training, validation, and test subsets with
0.70 × 0.15 × 0.15 split, respectively. All comments associated with a song are then
placed in that song’s corresponding subset. Valence and arousal labels are normal-
ized and scaled to [0, 1]. Inputs are filtered to remove URLs and HTML tags. Further
text pre-processing is unnecessary for fine-tuning of pretrained large language mod-
els, as BERT and similar models use unfiltered text from online sources for their
pre-training tasks[18]. These models expect inputs to adhere to standard grammat-
ical structure, and as such we do not lemmatize nor remove stopwords from our
comments. Each comment is assigned a music valence and arousal prediction from
our regression model. To produce song-level valence and arousal labels from these
comment-level outputs, we take the average of all output labels for each comment
associated with a song to produce the final valence-arousal estimation for that song.

7 https://huggingface.co/models

https://huggingface.co/models
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5 Music Emotion Recognition with Large Language Models

We test the performance of a BERT-based regression model for predicting the emo-
tive qualities of a piece of music. We begin by measuring the performance impact
of language models trained to be case-sensitive versus their uncased counterparts.
Next, we test comment-level filtering schemes, evaluating the impact of dropping
short comments or those below a certain score threshold, where score is a measure
of likes or upvotes from the comment’s platform of origin. We compare several large
language models to investigate the impact of different transformer architectures and
pretraining schemas for this task. For our tuning experiments, we test each model
configuration on both AMG1608 and PMEmo, chosen for their manually annotated
labels and active discussion on the social media platforms we investigate. We select
the filtering strategy and pretrained model with the best performance on these two
datasets and investigate its performance on the DEAM and Deezer datasets.

5.1 Model Parameters and Dataset Preprocessing

We compare model implementation and dataset preprocessing methods for predicting
music emotion targets from AMG1608 and PMEmo using our musical discourse
dataset. First, we evaluate both cased and uncased versions of BERT for this task
and measure the performance implications of case sensitivity in BERT pre-training
on our task. Informed by this experiment, we then test dataset filtering methods to
identify a preprocessing strategy to reduce potential noise in our social media data.

5.1.1 Case-Sensitivity of Language Model

We explore two versions of the BERT model: one case-sensitive (bert-base-cased)
and the other, case-insensitive (bert-base-uncased). bert-base-uncased uses
the same pre-training tasks as its cased counterpart. However, during pretraining, all
text is transformed to lower-case and accent markers are removed.8 We compare the
performance of these two models on our task. For each model, we run experiments
on AMG1608 and PMEmo. In both cases, the model is trained on a combination of
comments from YouTube and Reddit.

In Table 3 we show the Pearson’s correlation between our models’ predictions
and the datasets’ annotated labels. When training on AMG1608, we observe a
slight yet measurable improvement in model performance with the cased variant
of BERT. We expect this improvement results from the use of capitalization as an
important mechanism for conveying tone or intent, and therefore provides important
semantic information for our emotion recognition tasks. We use bert-base-cased
in following experiments.

8 See https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased
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PMEmo AMG1608

Valence Arousal Valence Arousal

bert-cased 0.68 0.47 0.51 0.75
bert-uncased 0.68 0.49 0.45 0.74

Table 3: Pearson’s correlation of cased and uncased variants of BERT.

5.1.2 Comment Filtering

Though we perform some preprocessing on the input text, this does not mean that all
inputs are useful for our downstream task. To address the innate noisiness of social
media data, we evaluate a selection of strategies for rejecting certain comments from
our training set. We begin by filtering comments based on the number of likes or
upvotes they receive from other users on their respective social media platform. We
assume that highly rated comments are more likely to express sentiments shared
by the community. By filtering out comments with lower scores, we hope to prune
off-topic discussion and spam, as these types of responses are less likely to be
informative. We initially begin with a score threshold of 3, based on the criteria used
by other large language models which rely on Reddit data for their pre-training dataset
[49]. This aggressive filtering method removes a total of 71% of all comments across
AMG1608 and PMEmo. We also explore a weaker filtering threshold, requiring only
that the score be positive (≥ 1), excluding a more modest 36% of our total comments.

When training on data filtered with a score threshold of 3, we observe marginal
improvements in performance over the unfiltered BERT baseline across all dimen-
sions except valence on PMEmo, for which we observe a decrease in correlation by
28%. The less aggressive score threshold of 1 does not appear to have as drastic
impact on performance on the PMEmo dataset, and in fact outperforms baseline by
4% to valence and 10% to arousal. However, on the AMG1608 dataset, lowering the
score threshold weakens performance overall and it does not exceed baseline perfor-
mance. We suspect that dataset size is an important factor in this large difference in
per-dataset performance. A filtering regimen which works well for AMG1608 may
remove too many comments from PMEmo, and one which optimizes for PMEmo may
leave too many noisy inputs for AMG1608. Additionally, we test filtering comments
by length. Our model expects inputs of at most 128 words, adding zero-tokens to pad
all inputs to this dimension. Though attention masking allows our model to handle
zero-padded inputs without introducing excess noise, longer inputs contain more
semantically meaningful tokens in each input tensor. We identify that the bottom
quartile of comments in the combined AMG1608 and PMEmo musical discourse
dataset has at most 30 characters. We drop this lower quartile of comments.

We combine our score threshold and length threshold filters to require all com-
ments both be longer than 30 characters and have a positive score. Comparatively,
this yields improved performance when predicting arousal labels for PMEmo and
valence labels for AMG1608 than any other individual preprocessing method. How-
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ever, this comes at the cost of a reduction in predictive performance in the other
dimensions. When we filter short comments in the bottom quartile of character
length, we achieve the best performance overall, with a 2.1% increase over baseline.
We apply this technique in our comparison of language models in subsection 5.3.

PMEmo AMG1608

Valence Arousal Count Valence Arousal Count

Baseline 0.68 0.46 688,712 0.51 0.75 1,281,473
Score ≥ 3 0.49 0.47 221,360 0.53 0.79 352,481
Score ≥ 1 0.71 0.51 448,631 0.45 0.74 822,623
Length ≥ 30 0.80 0.48 474,827 0.52 0.65 976,081
Joint Filtering 0.63 0.57 334,215 0.62 0.57 654,316

Table 4: Impact of comment filtering strategies on model performance.

5.2 Comparison of Social Media Sources

Next, we compare the utility of conversations from each social media platform for
the purpose of music emotion recognition in Table 5. YouTube is widely used for
sharing and listening to music, and we anticipate that users commenting most likely
recently watched the music video. Reddit, on the other hand, is more suitable for
longer conversations but lacks the YouTube’s popularity as source for music. We
believe both types of conversations contain semantic information relevant to the task
of music emotion recognition. However, the difference in both user experience and
intent warrants an investigation into models trained on individual sources.

PMEmo AMG1608

Valence Arousal Valence Arousal

Youtube 0.54 0.47 0.60 0.65
Reddit 0.51 0.50 0.34 0.54
All 0.80 0.48 0.52 0.65

Table 5: Performance of source-specific models.

We find that a model trained on exclusively YouTube comment data exceeds our
baseline model’s performance on the AMG1608 dataset. However, neither source-
specific model outperforms the best scores for AMG1608 presented in Table 4.
A YouTube specific model underperforms relative to our multi-source baseline on
PMEmo dataset, again demonstrating that additional filtering adversely impacts per-
formance for datasets lacking large amounts of commentary. We find that models



18 Aidan Beery and Patrick J. Donnelly

trained on only YouTube conversations outperform those trained only on Reddit data,
which we attribute to the fact that our dataset includes 135% more YouTube com-
ments than Reddit submissions. Overall, our combined source model outperformed
both models trained on individual social media sources.

5.3 Comparison of Language Models

As detailed in subsection 2.4, various BERT-derived models have sought to address
limitations with the model and improve its performance on downstream tasks. We
compare three of these models, fine-tuning each on our emotion prediction task.
Specifically, we investigate DistilBERT [51], RoBERTa [41], and xl-net [66], each
addressing different limitations of the original approach.

PMEmo AMG1608

Valence Arousal Valence Arousal

BERT 0.80 0.48 0.52 0.65
DistilBERT 0.80 0.46 0.49 0.64
RoBERTa 0.79 0.53 0.55 0.67
xl-net 0.80 0.50 0.55 0.63

Table 6: Performance of selected pretrained large language models after fine-tuning.

We observe a small improvement in performance using language models pre-
trained on larger corpora of text. Predictions generated from models using Dis-
tilBERT achieve correlations within 97% of baseline, reinforcing claims made in
[51]. xl-net and RoBERTa outperform BERT by 1.3% and 4.3%, respectively.
Both of these models use significantly larger datasets for their respective pretraining
approaches. We select RoBERTa for our final model evaluations in subsection 5.4.

5.4 Dataset Comparison

In our previous experiments, we focused on the PMEmo and AMG1608 datasets
because the songs in these datasets were annotated by human subjects. In our final
experiment, we compare our approach’s performance across the available datasets,
including both DEAM, which suffers from a lack of relevant social media commen-
tary, and Deezer, whose annotations were synthetically generated. In this experiment,
we first fine-tune RoBERTa using the combined commentary from both Reddit and
YouTube. We then filter all comments shorter than 30 characters, dropping the short-
est 25% of comments. We evaluate this model’s performance on the DEAM and
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Deezer datasets, whose distributions of labels differ from those of AMG1608 or
PMEmo (see Figure 1).

Valence Arousal

AMG1608 0.55 0.67
PMEmo 0.79 0.53
DEAM 0.08 0.02
Deezer 0.47 0.43

Table 7: Pearson’s correlations to the ground truth labels for the four datasets.

We find that our model’s predictions achieve weak but measurable correlations
to the synthetically annotated labels in the Deezer dataset. This is not surprising
since the synthetically generated annotation are less likely to reflect the range and
nuance of affective responses reported by human subjects when listening to music.
We hypothesize that the social media discourse our model uses to predict a song’s
emotive properties may not correlate well with the word-level representations of
text tags used to synthesize the Deezer dataset. Although we expected our model
to struggle with the DEAM dataset, we observe that our model completely fails to
predict emotional responses to the songs from DEAM. The labels in the DEAM
dataset are provided by crowdsourced human annotators in a method similar to the
labels provided in AMG1608. However, as shown in Table 2, our data collection of
social media commentary yields significantly fewer comments associated with songs
from DEAM than any other datasets. The average number of YouTube comments
per song in DEAM is only 155, compared to between 400 and 650 comments per
song for the other datasets. Given the insufficient quantity of discourse, our model
was unable to learn from the DEAM dataset.

6 Discussion

We present a novel approach to predict dimensional music emotion labels through
sentiment analysis of social media conversations discussing a piece of music. To
assess the potential for a model to estimate a song’s affective qualities solely from
social media discourse, we create a large corpus of online conversations related to
the songs in four published datasets for music emotion recognition. We construct a
music emotion prediction system using pretrained large language models, leveraging
the language representations learned by these transformer models to fine-tune each
to this task. Overall, we observe modest correlations between the predictions made
by these models and the dimensional emotion labels provided by human annotators.
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Fig. 4: Comparisons of the distributions of the ground truth labels (right) against our
model’s predictions (left) in the valence-arousal space.
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6.1 Limitations

We visualize our output model predictions in the valence-arousal space in Figure 4.
Our model’s predictions tend to cluster closely to the center of this space. This
indicates that, despite a moderate linear relationship between our estimates and true
labels, these predictions are often collapsing to the average within the distribution.
This issue persists despite our attempts to reduce the noise in our dataset. We
anticipate this phenomenon results from our approach to aggregating comment-
level predictions to generate a single overall valence and arousal estimate for a
song. In our approach, we predict a valence and arousal value for each comment,
then average the comment-level predictions to produce a song-level estimate. This
process discards valuable semantic information. Comment-level predictions cannot
capture the relationship between the comments, including those that serve as replies
to another. Furthermore, this aggregation process may collapse comments belonging
to the same song with conflicting sentiments to a neutral value.

Our model requires songs to correspond to a sufficient volume of comments
available on the social media platforms. This requirement restricts our model’s ability
to make inferences about the emotive qualities of newly released songs or those that
belong to a particularly niche genre. Models which use the audio information and
lyrics of a song to make these predictions would not share such limitations. In our
analysis of the DEAM dataset [3], we find that the copyright-free nature of these
songs was correlated with our inability to find relevant conversational activity online.
Without sufficient data, our model was unable to make meaningful predictions.

6.2 Future Work

We will explore methods to preserve the relationships between comments associated
with the same song. In the current work, our model expects a single comment, paired
with an accompanying music valence-arousal label, for each input. However, this
does not reflect the task we seek to learn: a single valence-arousal prediction for
a song given a set of comments. In future work, we will investigate new model
architectures capable of receiving a single song, with all accompanying discourse
packed into a single input tensor, and learning a music affect label without reliance
on an aggregation of individual comment-level predictions. A potential approach to
address this problem is to simply concatenate comments together to form a single
input. BERT and its derivatives use [SEP] tokens to indicate the beginnings and
ends of distinct sequences within a single input. However, the runtime complexity
of transformer models scales quadratically with input size [18], and most large
language models limit to a maximum of 1024 tokens per input. This restricts how
many comments can be included as input. Further investigation is needed to design
a custom architecture to learn across the different comments of a single thread.

We observe potential in our joint filtering approach in Table 4. Filtering com-
ments in our musical discourse dataset marginally improves model performance.
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Furthermore, it appears that filtering by both length and score improves performance
along dimensions on which our model underperforms, namely PMEmo arousal and
AMG1608 valence prediction. However, these filtering strategies resulted in incon-
sistent performance between datasets, which results from the differences in number
of comments available by dataset. By applying dynamic filtering methods, which
adjust score and length thresholds based on the number of samples which exist in a
dataset, we may address the inconsistent effects of filtering techniques across datasets.
Additional criteria for comment filtration should also be introduced and compared
against the methods we demonstrate. For example, comments not associated with
the expression of an affective response, as determined by existing dictionaries of
affective terms[60], could be removed to filter out comments of neutral sentiment.

Additionally, we plan to explore additional sources for music-relevant online dis-
course. Last.fm and Soundcloud9 are both online platforms that focus on music, and
these communities are a potential source of information directly related to specific
pieces of music. The community-provided tags on Last.fm have been used in prior
music emotion recognition experiments [35, 17, 6, 14]. This platform also allows
users to post comments in response to a specific track with comment mechanism
known as “Shouts”. Similarly, Soundcloud users can respond to a song with a public
comment. Because these comments stem from communities on music-specific plat-
forms, and are in direct response to a song as opposed to responding to a post about
a song, we anticipate that the conversations on these platforms may be valuable to a
social media-based music emotion recognition system.

To address the cases of songs with limited or no presence on these social media
platforms, we intend to explore feature spaces beyond social media data to augment
our existing approach. We expect the inclusion of lyrics, song metadata, and acoustic
features in conjunction with our social media information to yield a more robust
estimator. We hope that the exploitation of these feature spaces will improve a model’s
performance on songs for which there is comparatively little online conversation.

7 Conclusion

The development of an automatic system for estimating the emotive qualities of a
piece of music has been impeded by a lack of large, high-quality, annotated music
emotion recognition datasets. Such annotation experiments are expensive and time-
consuming to perform. Furthermore, the distribution of the audio samples used in
such datasets is prohibited by copyright law in many cases, restricting the use of
an important feature modality for music emotion prediction tasks. We demonstrate
the feasibility of predicting continuously-valued music emotion labels using only
musical discourse from social media platforms. Such an approach does not rely on
a song’s audio nor its lyrics, enabling inference to be drawn about a song’s affective
qualities indirectly and without access to copyrighted information.

9 https://soundcloud.com/

https://soundcloud.com/
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We create a large dataset of social media conversations about musical samples
using the songlists provided by four music emotion recognition datasets. In total,
we gather over 11 million comments discussing nearly 20 thousand songs. We use
this dataset to design and evaluate a system for music emotion prediction using
pretrained transformer models. We find that, with relatively few training epochs,
these large language models can fine-tune to our music valence-arousal prediction
task and provide emotion estimations with moderate correlation to human-provided
annotations. To our knowledge, this is the first attempt to predict musical valence and
arousal labels using exclusively conversational data from social media platforms.

The ability to predict how an average listener may respond to a piece of mu-
sic could be used to improve existing music recommender systems. Without the
need for costly annotation experiments nor licensing for song audio, large music
libraries could be rated for dimensional emotional values. The granularity afforded
by continuous valence-arousal annotations would allow music streaming services to
categorize songs with greater respect to affective characteristics. As another poten-
tial broader impact of this research, the ability to quickly and autonomously annotate
large libraries of music would enable intelligent systems to automatically generate
affect-aware music playlists [21], with potential uses in music therapy [55].

We demonstrate that the conversations people have online about a piece of music
can be used to train a model to predict the average affective response elicited in a
listener by that song. Our model achieves moderate performance on the prediction of
human annotated music emotion targets. Without access to song audio, pre-computed
acoustic features, or song lyrics, we are able to fine-tune a large language model to
estimate valence and arousal labels corresponding to affective response to a piece of
music using only this online musical discourse.
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G., Salamon, J., Zapata González, J.R., Serra, X., et al.: Essentia: An audio analysis library



24 Aidan Beery and Patrick J. Donnelly

for music information retrieval. In: D.S. Britto A Gouyon F (ed.) Proceedings of the 14th of
the International Society for Music Information Retrieval Conference (ISMIR), ISMIR, pp.
493–498. International Society for Music Information Retrieval (ISMIR) (2013)

8. Bradley, M.M., Lang, P.J.: Affective norms for english words (anew): Instruction manual and
affective ratings (1999)

9. Cabrera, D., et al.: Psysound: A computer program for psychoacoustical analysis. In: Proceed-
ings of the Australian Acoustical Society Conference, vol. 24, pp. 47–54. AASC Melbourne,
Australia (1999)

10. Cano, E., Morisio, M.: Moodylyrics: A sentiment annotated lyrics dataset. In: Proceedings
of the 2017 International Conference on Intelligent Systems, Metaheuristics & Swarm Intelli-
gence, ISMSI ’17, p. 118–124. Association for Computing Machinery, New York, NY, USA
(2017). DOI 10.1145/3059336.3059340

11. Chaki, S., Doshi, P., Patnaik, P., Bhattacharya, S.: Attentive rnns for continuous-time emotion
prediction in music clips. In: Proceedings of the 3rd Workshop on Affective Content Analysis,
pp. 36–46. AAAI (2020)

12. Chang, W.H., Li, J.L., Lin, Y.S., Lee, C.C.: A genre-affect relationship network with task-
specific uncertainty weighting for recognizing induced emotion in music. In: Proceedings of
the 2018 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE
(2018). DOI 10.1109/ICME.2018.8486570

13. Chen, Y.A., Wang, J.C., Yang, Y.H., Chen, H.: Linear regression-based adaptation of music
emotion recognition models for personalization. In: Proceedings of the IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2149–2153. IEEE
(2014). DOI 10.1109/ICASSP.2014.6853979

14. Chen, Y.A., Yang, Y.H., Wang, J.C., Chen, H.: The amg1608 dataset for music emotion
recognition. In: 2015 IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), p. 693–697. IEEE, South Brisbane, Queensland, Australia (2015). DOI
10.1109/ICASSP.2015.7178058

15. Chowdhury, S., Vall, A., Haunschmid, V., Widmer, G.: Towards explainable music emotion
recognition: The route via mid-level features. In: Proceedings of the 20th International Society
for Music Information Retrieval Conference, ISMIR, pp. 237–243 (2019). DOI arXiv:1907.
03572

16. Cross, I.: Music, cognition, culture, and evolution. Annals of the New York Academy of
sciences 930(1), 28–42 (2001). DOI https://doi.org/10.1111/j.1749-6632.2001.tb05723.x

17. Delbouys, R., Hennequin, R., Piccoli, F., Royo-Letelier, J., Moussallam, M.: Music mood de-
tection based on audio and lyrics with deep neural net. In: Proceedings of the 19th International
Society for Music Information Retrieval Conference, ISMIR, pp. 370–375 (2018)

18. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional
transformers for language understanding. In: ”Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers)”, pp. 4171 – 4186 (2019). DOI 10.18653/
v1/N19-1423

19. Dong, Y., Yang, X., Zhao, X., Li, J.: Bidirectional convolutional recurrent sparse network
(bcrsn): an efficient model for music emotion recognition. IEEE Transactions on Multimedia
21(12), 3150–3163 (2019). DOI 10.1109/TMM.2019.2918739

20. Donnelly, P.J., Beery, A.: Evaluating large-language models for dimensional music emotion
prediction from social media discourse. In: M. Abbas, A.A. Freihat (eds.) Proceedings of the
5th International Conference on Natural Language and Speech Processing (ICNLSP 2022),
pp. 242–250. Association for Computational Linguistics (2022)

21. Donnelly, P.J., Gaur, S.: Mood dynamic playlist: Interpolating a musical path between emotions
using a KNN algorithm. In: T. Ahram, R. Taiar (eds.) Human Interaction & Emerging
Technologies: Artificial Intelligence & Future Applications (IHIET-AI 2022), vol. 23. AHFE
Open Access (2022). DOI 10.54941/ahfe100894
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